

Nondestructive Evaluation (NDE) System for the Inspection of Operation-Induced Material Degradation in Nuclear Power Plants

NOMAD – Summary of the 1st Project Year

NOMAD The project at a glance

Aim

NOMAD aims to develop a non-destructive evaluation (NDE) system for nuclear power plants to assess the embrittlement in reactor pressure vessel (RPV) materials

01/06/2017-31/05/2021

NOMAD Overview

- (1) Goal / Idea / Vision
- (2) Work plan
- (3) Project progress
- (4) Consortium

NOMAD (1) Goal / Idea / Vision

Overall goal

Demonstrate a (multi-method) NDE approach that can quantify neutroninduced material degradation (in terms of DBTT etc.) by measuring through cladding under field conditions

Idea

- Identify a common, material-independent trend in NDE data of multiple methods as a function of degradation
- Use the difference between degraded and non-degraded conditions of cladded material as degradation quantifier

Vision

Use the fact that part of the RPV is not degraded since radiation is low to recalibrate (zero-offset) the NDE hybrid approach

NOMAD (2) Work plan

Provision and reference characterization of materials

WP1: Description and delivery of the sample sets (including cladded material) and irradiation conditions, sample provision, microstructure characterization and determination of the mechanical properties

- Sample set definition, degradation degree, irradiation preparation, microstructure features and mechanical properties
- Results of the reference materials and preparation irradiated materials
- Results of the cladded and laboratory materials

- Different relevant RPV materials
- Weld and base materials
- Western and eastern RPV design materials
- Different samples geometries
- Similar realistic operation conditions

Type 1: half Charpy

Goal:

assess NDE on half Charpy samples

Type 3:

Non-cladded blocks

Goals:

validate sensors, verify NDE trend on type 3 vs type 2 (Charpy samples)

Type 2: Charpy

Goals:

identify common NDE trend, sensor optimization, **RRT**

Type 4:

Cladded blocks

Goals:

proof feasibility of NDE through the cladding, confirm NDE trend of type 4 vs type 2

Conditions

Neutron irradiation

- high neutron flux
- four fluences
- low temperature

Thermal treatment – "step cooling procedure"

- temperature
- time

Destructive tests

Microstructure characterization

 Metallographic analysis (optical microscopy)

Mechanical tests

- yield and ultimate tensile strength
- Mechanical hardness
- Charpy impact properties

NDE methods development and evaluation

WP2: Nondestructive materials characterization (MC) and evaluation of the progression of the material properties

- NDE results on Charpy samples
- Individual non-destructive evaluation of embrittlement on cladded samples
- Effective individual NDE methods for the characterization of neutron irradiation-induced embrittlement of cladded material

Settings optimization

- Coupling conditions
- Probes geometries
- Samples holders
- Measuring parameters

Preliminary tests of NDE setups and characterization of the RPV steels samples in as-received/thermally treated condition

Charpy samples

Homogeneity and influence of the thermal treatment

- Electrical resistivity (DCRPD)
- Time of flight (Piezo-US)
- Micromagnetic parameters (3MA)
- Magnetic permeability (MAT)
- Seebeck coefficient (TEPMM)
- Magnetic Barkhausen noise (MIRBE)

Blocks

Homogeneity, influence of the surface conditions and thermal treatment

- Magnetic permeability (MAT)
- Micromagnetic parameters (3MA)
- Seebeck coefficient (TEPMM)
- Magnetic Barkhausen noise
- Time of flight (EMAT)

- Preliminary tests of NDE setups under simulated operational condition (Hot cell)
- Characterization of the RPV steels Charpy samples in as-received and neutron-irradiation condition by means of non-destructive evaluation methods

NDE tool development

WP3: Advanced nondestructive evaluation tool for demonstration of materials characterization

- Method classification and database
- Comparison and selection of measurement techniques
- Demonstration of the tool for advanced non-destructive materials characterization

Application & Validation

WP4: Validation = proof of meeting the requirements regarding accuracy and performance; Application = demonstration and optimization of the developed NDE tool (WP3) under realistic conditions

- Identification of essential parameters and test conditions
- Parametric study
- Demonstration and field recommendation

Identification of essential parameters and test conditions

NDE Systems

- Physical principles
- Methods
- Techniques
- Procedures
- Parameter selection

NDE Output Information

3MA (IZFP): 21 EM quantities

MAT (MTA): magnetic permeability

MIRBE (CU): several EM quantities

DCRPD (VTT): electrical resistivity

TEPMM (PSI): Seebeck coefficient

US/EMAT (IZFP): time of flight,

amplitude

True Temp. (°C)

Target: Neutron irradiation-induced embrittlement as ductil-to-brittle transition temperature **Final Performance Estimation: NDF** Statistical Analysis of Experiments **Output Information** Compensation for Conditions not Covered Mean NDT (°C) Tool **Empirical** Algorithm **Uncertainty** (Field Cond.)

WP5: Management, Dissemination, Exploitation

- Implementation of management structures (Project Management Platform - ProjectAngel) **∨**
- Scientific monitoring and outreach to the public (Plan for the dissemination and exploitation of project results) \lor
- External project communication and networking (External project website – <u>www.nomad-horizon2020.eu</u>)
- IP Management and exploitation strategy (Exploitation workshop)
- Valorization of research outcomes

NOMAD (4) NOMAD Consortium

